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Abstract. We study the evolution of heavy quarkonium states with temperature in a Quark-Gluon Plasma
(QGP) by evaluating an in-medium QQ T-matrix within a reduced Bethe-Salpeter equation in S- and
P-wave channels. The interaction kernel is extracted from finite-temperature QCD lattice calculations of
the singlet free energy of a Q@ pair. Quarkonium bound states are found to gradually move across the
QQ threshold after which they rapidly dissolve in the hot system. We calculate Euclidean-time correlation
functions and compare to results from lattice QCD. We also study finite-width effects in the heavy-quark

propagators.

PACS. 25.75.Dw Particle and resonance production — 12.38.Gc Lattice QCD calculations — 24.85.4+p
Quarks, gluons, and QCD in nuclei and nuclear processes — 25.75.Nq Quark deconfinement, quark-gluon

plasma production, and phase transitions

1 Introduction

Bound states of heavy (charm and bottom) quarks (@ =
b, ¢) are valuable spectroscopic objects in Quantum Chro-
modynamics (QCD) [1]. When embedded into hot and/or
dense matter a large class of medium modifications can be
studied, including (Debye-) color-screening of the QQ in-
teraction, dissociation reactions induced by constituents
of the medium, and the change in thresholds caused by
mass (or width) modifications of open heavy-flavor states.
Lattice QCD (1QCD) calculations have made substantial
progress in characterizing in-medium quarkonium proper-
ties from first principles. In particular, it has been found
that ground-state charmonia [2-4] and bottomonia [5] do
not dissolve until significantly above the critical tempera-
ture, T., which has been supported in model calculations
based on potentials extracted from 1QCD, using either a
Schrédinger equation for the bound-state problem [6-9],
or a T-matrix approach which additionally accounts for
scattering states [10]. More reliable comparisons to 1QCD
can be performed using (space-like) Euclidean-time cor-
relation functions [11,12], which are readily evaluated in
1QCD. The conversion of (time-like) model spectral func-
tions requires a description not only of the bound-state
part of the spectrum but also its continuum and thresh-
old properties.

In the present work we evaluate Euclidean correlation
functions for charmonium and bottomonium in a T-matrix
approach. The basic input consists of in-medium QQ po-
tentials extracted from 1QCD, inserted in a scattering
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equation to calculate the in-medium Q@ T-matrix [10].
This incorporates bound and scattering states on an equal
footing (based on the same interaction), and additionally
enables a straightforward implementation of in-medium
single-particle (quark) properties via self-energy insertions
in the two-particle Green’s function.

2 Scattering equation and bound states

The T-matrix equation for Q@ scattering in the center-
of-mass frame and in partial-wave basis reads [10]

Ti(E;q',q) = Vi(d', @)
2 o0
__/ dk k> Vi(q' k) Ggaq(B; k) Ti(Es k,q), (1)
™ Jo

which follows from a standard 3-dimensional reduction
of the Bethe-Salpeter equation [13]. Ggq(FE;k) denotes
the intermediate two-particle propagator including quark
self-energies (X) and Pauli blocking. The T-matrix equa-
tion (1) is solved with the Haftel-Tabakin algorithm [14],
in which the integral equation is solved by discretizing
3-momentum, ij:l F(E)ir T(E)k; Vij, and subse-
quent matrix inversion. The zeroes of det F(E) for E <
FE;p, determine heavy quark-antiquark bound states.

The quark self-energy, X', encodes the interactions with
(light) quarks and gluons from the heat bath [10]. In the
present work we consider a fixed heavy-quark mass mg
(i.e., Re X = 0) together with a small imaginary part,
ImY¥ = —0.01GeV, for numerical purposes. Effects of
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Fig. 1. QQ potential for several temperatures above T, based
on the color-singlet internal energy.

temperature-dependent heavy-quark masses and widths
are investigated in ref. [15].

The kernel of the scattering equation, V', can be es-
timated from the 1QCD heavy-quark free energies, Fy,
even though there is still an ongoing discussion on how to
properly do it. Here we identify the heavy-quark potential
with the color-singlet internal energy, Uy = Fy — T %,
which reproduces ground-state charmonium dissociation
temperatures as found in lattice analysis of spectral func-
tions [7-10]. In fig. 1 we show the QQ potential, V (r,T) =
Ui(r,T) — Ui(r = 00,T), as obtained from a fit to the
1QCD color-singlet free-energy data [16], previously em-
ployed in [10]. The potential evolves smoothly with tem-
perature, decreasing both in magnitude and range. Dif-
ferent parameterizations of the lattice data imply sizable
uncertainties in the potential through the thermal deriva-
tive of the free energy. These uncertainties are studied in
ref. [15] by alternatively obtaining the heavy-quark po-
tential from a direct fit to the 1QCD internal energy data
of ref. [17]. Vi(¢', q) follows from a Fourier transform and
partial-wave expansion.

3 Quarkonium T-matrices in the QGP

We start the calculation of the in-medium Q@ T-matrices
by fixing the heavy-quark masses so that the correspond-
ing quarkonium ground states approximately agree with
their vacuum masses for the lowest considered tempera-
ture (T' = 1.17,), i.e., m. = 1.7GeV and m; = 5.1 GeV.
Figure 2 summarizes the on-shell S-wave c¢ scattering am-
plitude as a function of the CM energy, for several tem-
peratures. We do not include the hyperfine (spin-spin) in-
teractions and therefore 1. (ny) and J/¢ (T) states are
degenerate. At the lowest temperature, we recover the
charmonium ground state at E ~ 3.10 GeV, whereas the
first-excited state (¢') has just about melted. As the tem-
perature increases, the J/1(1S) gradually moves toward
threshold and the T-matrix is appreciably reduced. The
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Fig. 2. T-matrix for S-wave cc¢ scattering based on the po-
tential in fig. 1. Also shown is det F (dashed line, arbitrary
units). From left to right (up-down) the temperatures are
(1.1,1.5,2.0,2.5,3.0,3.3) T..
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Fig. 3. Same as in fig. 2 but for S-wave bb scattering.
From left to right and up to down the temperatures are
(1.1,1.5,1.8,2.1,2.7,3.5) T,.

bound state survives up to ~ 37T, where it crosses the c¢
threshold and rapidly melts in the hot system.

The S-wave bb T-matrix exhibits two bound states at
the lowest temperature (E & 9.45, 9.95 GeV for T(15), 1
and 1°(25), i, respectively) and the remnant of a third
one, which is (almost) melted in the medium, cf. fig. 3.
The 7 (2S) moves across the bb threshold at T = 2.1 T,
whereas the 1S state survives in the QGP until much
higher temperatures, beyond T & 3.5T.,.

We only find one P-wave bound state for the charm
system at the lowest temperature, at £ =~ 3.4GeV,
which we associate with the y.. The P-wave bb sys-
tem exhibits two bound states at 1.17,., with energies
E = 9.90,10.15GeV, in good agreement with the nom-
inal values for x;(1P) and x;(2P) in the vacuum. The
latter moves beyond threshold at 7' ~ 1.37,, and the
(1P) state at T = 2.3T.. Masses and binding energies,
(Eg = Ey, — M), of the P-wave states are summarized in
table 1 for several temperatures.
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Table 1. Masses and binding energies (in GeV) for P-wave
quarkonia as obtained from det F(E) = 0.

T/T. 11 13 15 2 2.3
Mx.(1P)] | 34 - - - -
Ep[x.(1P)] | 0 - - - -
Mxs(1P)] | 9.90 998 10.04 10.14 10.20
Ep[xs(1P)] | 0.30 022 016 006 =0
M[x»(2P)] | 10.15 10.20 - - -
Eslxs(2P)] | 0.05 =~0 - - -

4 Spectral functions and Euclidean correlators

The Euclidean-time correlation function is defined as the
thermal two-point mesonic correlation function in a mixed
Euclidean-time momentum representation (here p = 0),
cosh[w(r — /2)]
sinh(wB/2)
where o is the spectral function obtained from closing ex-
ternal legs of the in-medium T-matrix, schematically as

E)= / Goo+ / G5oTGoo, o(E) x ImG(E). (3)

As expected, the S-wave charmonium spectral func-
tion (top panel of fig. 4) reflects the bound states of the

G(r,T) = /Ooo dwo(w,T) 2)
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Fig. 4. Top: cc spectral function for S-wave scattering at sev-

eral temperatures. Bottom: normalized correlation function at
several temperatures.
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Fig. 5. Same as in fig. 4 for ¢c¢ P-wave scattering.

T-matrix, but the (non-perturbative) c¢ rescattering also
generates appreciable strength above threshold, where the
remnant of the first-excited state (1(2S5)) can be still in-
ferred at T = 1.1T,.. The corresponding correlation func-
tion (bottom panel of fig. 4) is normalized to a “recon-
structed” correlator represented by a zero-temperature
spectral function consisting of a d-function—like bound-
state spectrum and perturbative continuum with onset at
Econt = 4.5GeV [9]. The temperature evolution of the
correlator is a combined result of a decrease in binding en-
ergy of the bound states and the contribution of the non-
perturbative continuum. The sizable drop at large 7 is in
qualitative agreement with 1QCD [3]. The latter exhibits
somewhat less reduction, leaving room for the effects of a
threshold reduction with temperature in our 7-matrix.

The P-wave charmonium spectral function (fig. 5, top)
exhibits one bound state (x.) just below the threshold,
which rapidly melts into the continuum accompanied by
a sizable threshold enhancement. The normalized corre-
lator steeply rises in the low-7 regime, due to: i) non-
perturbative rescattering and ii) a larger threshold in the
“reconstructed” correlator. While this is qualitatively con-
sistent with 1QCD, the evolution with temperature is op-
posite, which could improve by a shift of strength to lower
energies due to a decreasing heavy-quark mass with tem-
perature. The bottomonium correlation functions follow a
similar pattern as for the charmonium system.

It turns out that the 7-dependence of the (normal-
ized) Euclidean correlators is rather sensitive to the “re
constructed” correlator used for normalization. However,
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